Mechanisms underlying long- and short-range nodal signaling in Zebrafish
نویسندگان
چکیده
Precise regulation of the signaling range of secreted molecules is essential for proper pattern formation during development. The Nodal family of TGF-beta proteins has been shown to function as both short- and long-range signals. But the underlying mechanisms remain elusive. In this study, we investigated the regulation of the signaling range of zebrafish Nodal proteins Cyclops and Squint, which are short- and long-range signals, respectively. We show that (1) the stability of Cyclops and Squint correlates with the activity range but increasing the stability of the short-range Cyclops does not increase its signaling range; (2) structural differences in the N-terminus region of the mature peptides of Cyclops and Squint determine their differences in the signaling range and swapping the N-terminus region of the Squint mature ligand into that of Cyclops makes the latter function at a distance.
منابع مشابه
A Temporal Window for Signal Activation Dictates the Dimensions of a Nodal Signaling Domain
Morphogen signaling is critical for the growth and patterning of tissues in embryos and adults, but how morphogen signaling gradients are generated in tissues remains controversial. The morphogen Nodal was proposed to form a long-range signaling gradient via a reaction-diffusion system, on the basis of differential diffusion rates of Nodal and its antagonist Lefty. Here we use a specific zebraf...
متن کاملMechanisms of spinal cord injury regeneration in zebrafish: a systematic review
Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...
متن کاملLefty Proteins Are Long-Range Inhibitors of Squint-Mediated Nodal Signaling
The regulation of signaling pathways by feedback inhibitors has become an emerging theme in the control of pattern formation during development. Nodal and Lefty proteins belong to divergent subfamilies of the TGF-beta family. Nodal signals promote mesendoderm induction in vertebrates, and Lefty proteins antagonize it. In zebrafish, Squint functions as a long-range Nodal signal during mesoderm i...
متن کاملTwo Modes by which Lefty Proteins Inhibit Nodal Signaling
During vertebrate embryogenesis, members of the Lefty subclass of Transforming Growth Factor-beta (TGFbeta) proteins act as extracellular antagonists of the signaling pathway for Nodal, a TGFbeta-related ligand essential for mesendoderm formation and left-right patterning. Genetic and biochemical analyses have shown that Nodal signaling is mediated by activin receptors but also requires EGF-CFC...
متن کاملNodal Stability Determines Signaling Range
Secreted TGFbeta proteins of the Nodal family pattern the vertebrate body axes and induce mesoderm and endoderm . Nodal proteins can act as morphogens , but the mechanisms regulating their activity and signaling range are poorly understood. In particular, it has been unclear how inefficient processing or rapid turnover of the Nodal protein influences autocrine and paracrine signaling properties...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 123 شماره
صفحات -
تاریخ انتشار 2006